2004 - 09

Int J Immunopathol Pharmacol. 2004 Sep-Dec;17(3):317-30.

Comparison between flurbiprofen and its nitric oxide-releasing derivatives HCT-1026 and NCX-2216 on Abeta(1-42)-induced brain inflammation and neuronal damage in the rat.


Prosperi C, Scali C, Barba M, Bellucci A, Giovannini MG, Pepeu G, Casamenti F. Department of Pharmacology, University of Florence, Florence, Italy.

Brain inflammation is an underlying factor in the pathogenesis of Alzheimers disease (AD). We investigated, in vivo, whether differences exist in the anti-inflammatory and neuroprotective actions of flurbiprofen and its two nitric oxide-donor derivatives, HCT-1026 and NCX-2216, and the ability of these two derivatives to release nitric oxide in the brain. In adult rats injected into the nucleus basalis with preaggregated Abeta(1-42) we investigated glia reaction, the induction of inducible nitric oxide synthase (iNOS), the activation of p38 mitogen-activated protein kinase (p38MAPK) pathway and the number of choline acetyltransferase (ChAT)-positive neurons and, in naive rats we investigated, by microdialysis, cortical extracellular levels of nitrite. Injection of Abeta(1-42) induced iNOS and activation of p38MAPK 7 days after injection and an intense microglia and astrocyte reaction along with a marked reduction in the number ChAT-positive neurons, persisting up to at least 21 days. Flurbiprofen, HCT-1026 and NCX-2216 (15 mg/kg) significantly attenuated the Abeta(1-42)-induced glia reaction, iNOS induction and p38MAPK activation 7 days after treatment and astrocytes reaction 21 days after treatment. On an equimolar basis, HCT-1026 resulted the most active agent in reducing the Abeta(1-42)-induced microglia reaction. The cholinergic cell loss was also significantly reduced by 21 days of HCT-1026 treatment. No differences in body weight were found between the animals treated for 21 days with 15 mg/kg of either HCT-1026 or NCX-2216 and the controls. Oral administration of HCT-1026 (15 mg/kg) or NCX-2216 (100 mg/kg) to naive rats was followed by significant and long lasting increases in cortical nitrite levels. These findings indicate that the addition of a nitric oxide donor potentiates the anti-inflammatory activity of flurbiprofen in a model of brain inflammation.



Bone. 2004 Sep;35(3):636-43.

The flurbiprofen derivatives HCT1026 and HCT1027 inhibit bone resorption by a mechanism independent of COX inhibition and nitric oxide production.

Idris AI, Del Soldato P, Ralston SH, van't Hof RJ. Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen AB25 2ZD, UK.

Prostaglandins and nitric oxide both modulate bone resorption and bone formation. We previously reported that a nitrosylated derivative of flurbiprofen, termed HCT1026, exerted inhibitory effects on osteoclastic bone resorption, which could not be reproduced by combining the parent compound with nitric oxide (NO) donors. The aim of this study was to investigate the mechanism by which HCT1026 inhibits bone resorption. We compared the effects of flurbiprofen and HCT1026 on osteoclast and osteoblast activity with those of HCT1027--an analogue of HCT1026, which lacks an NO-donating moiety. We found that HCT1026 and HCT1027 inhibited bone resorption in interleukin (IL)-1-stimulated murine osteoblast-bone marrow cocultures, with half-maximal effects (IC50) at 20 +/- 5 microM for HCT1026 and 25 +/- 6 microM for HCT1027 compared with 399 +/- 25 microM for flurbiprofen (P < 0.0001). These differences were unrelated to cyclooxygenase (COX) inhibition since HCT1026 and HCT1027 were about seven to eight times less potent than flurbiprofen at inhibiting COX-1 activity and half as potent at inhibiting COX-2 activity. Further studies showed that HCT1026 and HCT1027 activated caspase-3 in rabbit osteoclasts and promoted osteoclast apoptosis, as assessed by nuclear morphology and TUNEL assays. We conclude that HCT1026 and HCT1027 inhibit osteoclast formation and activity by a mechanism that is independent of NO production and COX inhibition. This raises the possibility that both compounds interact with a novel molecular target expressed on osteoclasts to promote apoptosis and inhibit bone resorption. This demonstrates that HCT1026 and derivatives could represent a novel class of antiresorptive drugs with therapeutic value in the treatment of bone diseases associated with accelerated bone loss due to osteoclast activation.



Br J Pharmacol. 2004 Sep;143(1):33-42.

Comment in:
Br J Pharmacol. 2004 Sep;143(1):1-2.

Liver delivery of NO by NCX-1000 protects against acute liver failure and mitochondrial dysfunction induced by APAP in mice.

Fiorucci S, Antonelli E, Distrutti E, Mencarelli A, Farneti S, Del Soldato P, Morelli A. Dipartimento di Medicina Clinica e Sperimentale, Clinica di Gastroenterologia ed Epatologia, Universita degli Studi di Perugia, Italy.

1. NCX-1000, (3alpha, 5beta, 7beta)-3,7-dihydroxycholan-24oic acid[2-methoxy-4-[3-[4-(nitroxy)butoxy]-3-oxo-1-propenyl]phenyl ester, is a nitric oxide (NO)-derivative of ursodeoxyxholic acid (UDCA) that selectively release NO in the liver. 2. Here, we demonstrated that administering mice with 40 micromol kg(-1) NCX-1000, but not UDCA, improves liver histopathology and reduces mortality caused by 330 micromol kg(-1) APAP from 60 to 25% (P<0.01). Administration of NCX-1000, in a therapeutic manner, that is, 2 h after acetaminophen (APAP) intoxication reduced mortality, improved liver histopathology and prevented liver IFN-gamma, TNF-alpha, Fas/Fas ligand and inducible nitric oxide synthase (iNOS) mRNA accumulation caused by APAP. 3. In vitro exposure of primary cultures of mouse hepatocytes to APAP, 6.6 mm, resulted in apoptosis followed by necrosis. Loss of cell viability correlates with early mitochondrial membrane potential (Deltapsi(m)) hyperpolarization followed by depolarization and cytochrome c translocation from mitochondria to cytosol. APAP-induced apoptosis associated with procaspase-3 and -9 cleavage, appearance of truncated Bid and activation of poly(ADP-ribose) polymerase (PARP). 4. Treating primary culture of hepatocytes with 5 microm cyclosporine and 10 microm trifluoperazine for eight resulted in significant reduction of apoptosis induced by APAP suggesting that loss of Deltapsim was mechanistically involved in apoptosis induced by APAP in vitro. 5. NCX-1000, but not UDCA, concentration-dependently (ED(50)=16 microm) protected against Deltapsi(m) depolarization and reduced transition from apoptosis to necrosis caused by 6.6 mm APAP. 6. Treating primary cultures of hepatocytes with the NO-donor DETA-NO, 100 microm, reduced apoptosis induced by APAP and prevented caspase activation. 7. In conclusion, NCX-1000 is effective in protecting against APAP-induced hepatotoxicity when administered in a therapeutic manner. This protection may involve the inhibition of apoptosis and the maintenance of mitochondrial integrity.



Br J Pharmacol. 2004 Sep;143(1):1-2.

Comment on:
Br J Pharmacol. 2004 Sep;143(1):33-42.

Acetaminophen hepatotoxicity: NO to the rescue.

Wallace JL. Department of Pharmacology & Therapeutics, Mucosal Inflammation Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.

Severe liver injury as a result of overdose or chronic use of acetaminophen (paracetamol) remains a significant clinical problem, accounting for as much as 40% of cases of acute liver failure. The mechanisms underlying the liver injury caused by acetaminophen have become much better understood in recent years. In this issue, Fiorucci et al. report that delivery of nitric oxide (NO) in small amounts to the liver, via a novel derivative of the bile acid ursodeoxycholic acid, results in significant protection of the liver from acetaminophen-induced damage. NO appears to produce these beneficial actions through several mechanisms, including the suppression of synthesis of several proinflammatory cytokines. There is also substantial evidence that a NO-releasing derivative of acetaminophen offers several advantages over acetaminophen itself, including enhanced analgesic potency and reduced liver toxicity.

Aucun commentaire: